EXCELLENCE IN MOTION

LS LINEAR SLIDE RODLESS CYLINDER

LS - LINEAR SLIDE

Endurance Technology features are designed for maximum durability to provide extended service life.

Adapted from the popular BC 2 , the Linear Slide features 2 precision steel guide rods integrated with the extrusion to provide positive support of the load. This makes the Linear Slide more rugged and capable with greater load capacity and higher bending moments. Built-to-order in stroke lengths up to 72 inches.

- Integrated into design

-3-PORTED HEADS

- Single End Porting
- Standard feature
- Simplifies air connections
- Provides maximum strength at major stress points
- Heat treated carbon steel withstands the toughest dynamic forces
- Strongest bracket design in the industry assures long life with less maintenance

FORMED END GRP WIPER SEAL

LOW CARRIER HEIGHT•

-Reduces overall actuator envelope
-Large mounting area for high load stability
-T-Slots for mounting flexibility

- Keeps contaminants from entering the sealing area
- Protects internal components
-Reduces maintenance while increasing productivity

TOLOMATIC... THE RODLESS CYLINDER LEADER

ORETADIED DUST BANDO

NOTE: Boxed letters indicate ordering codes
 OPTIONS

 AUXILIARY CARRIER DW
 - Substantially higher load capacity
 - Substantially higher bending moment capacity
 SUPPORTS M
 - Used for intermediate support
 - Flush with bottom of actuator
 to retain low profile
 - Drop-in, adjustable mounting locations

 T-NUTS
 - Used for intermediate support, combine with Tube Supports or mount directly to surface
 SHOCK ABSORBERS [ST [圆

- Smooth deceleration
- Allows increased operating speed
- Self-compensates for load or speed changes
- Minimizes impact load to equipment
- Higher equipment productivity
- Integrated to carrier design

SWITCHES

- Available in Proximity, Reed, Hall-effect and Triac
- 15 ft . cable with flying leads; available with quickdisconnect couplers

LS05 Linear Slide Rodless Cylinder

PERFORMANCE

LS05	
LSO5 OPTIONS	Page
Auxiliary Carrier	LS＿8
Proximity Sensors	LS＿13
Shock Absorbers	LS＿14
Switches	LS＿11
Supports	LS＿10
MORE INFORMATION	Page
Application Guidelines	BC4＿32
Ordering	LS＿18
Selection	LS＿16

THEORETICAL FORCE vs PRESSURE
PRESSURE（bar）

BEARING LIFE vs LOAD
LOAD（kg）

SPECIFICATIONS

LS05 BENDING MOMENTS AND LOAD

	BORE SIZE	MAX．BENDING MOMENT			MAX．LOAD
		Mx	Mz	Fz	
U．S．	0.50 in	$4.0 \mathrm{in}-\mathrm{lbs}$	$8.0 \mathrm{in}-\mathrm{lbs}$	$6.0 \mathrm{in}-\mathrm{lbs}$	10.0 lbs
Metric	12 mm	$0.45 \mathrm{~N}-\mathrm{m}$	$0.90 \mathrm{~N}-\mathrm{m}$	$0.68 \mathrm{~N}-\mathrm{m}$	4.5 kg

불
*NOTE: Four square nuts are provided with each linear slide for base mounting. Additionally 2 square nuts are provided for $30^{\prime \prime}$ of stroke and 2 for every $20^{\prime \prime}$ of stroke thereafter.

SPECIFICATIONS

	BORESIZE	WEIGHT		MAX. STROKE LENGTH*	MAX. PRESSURE	TEMPERATURE RANGE	END-OF-STROKE POSITIONING ACCURACY	STROKE ADJUSTMENT
		BASE	PER UNIT OF STOKE					
U.S.	0.50 in	1.2 lbs	$0.15 \mathrm{lbs} / \mathrm{in}$	72 in	100 PSI	20° to $140^{\circ} \mathrm{F}$	± 0.0005 in	± 0.12 in per end
Metric	12 mm	0.54 kg	$0.068 \mathrm{~kg} / \mathrm{mm}$	1829 mm	6.895 bar	-7° to $60^{\circ} \mathrm{C}$	0.0127 mm	$\pm 3.05 \mathrm{~mm}$ per end
*For longer strokes, alternate materials, mounting and/or fasteners - consult Tolomatic								

LS10 Linear Slide Rodless Cylinder

THEORETICAL FORCE vs PRESSURE

PRESSURE (bar)

BEARING LIFE vs LOAD

SPECIFICATIONS

LS10 BENDING MOMENTS AND LOAD

	BORE	MAX. BENDING MOMENT			MAX. LOAD
	SIZE	My	Mx	Mz	Fz
U.S.	1.00 in	80 in-lbs	80 in-lbs	125 in-lbs	100 lbs
Metric	25 mm	$9.0 \mathrm{~N}-\mathrm{m}$	9.0 N-m	$14.0 \mathrm{~N}-\mathrm{m}$	45.4 kg

불
*NOTE: Four square nuts are provided with each linear slide for base mounting. Additionally 2 square nuts are provided for $30^{\prime \prime}$ of stroke and 2 for every 20 " of stroke thereafter.

SPECIFICATIONS

	$\begin{aligned} & \text { BORE } \\ & \text { SIZE } \end{aligned}$	WEICHT			MAX. PRESSURE	TEMPERATURE RANGE	END-OF-STROKE POSITIONING ACCURACY	STROKE ADJUSTMENT
		BASE	PER UNIT OF STOKE					
U.S.	1.00 in	5.2 lbs	$0.4 \mathrm{lbs} / \mathrm{in}$	72 in	100 PSI	20° to $140^{\circ} \mathrm{F}$	± 0.0005 in	± 0.25 in per end
Metric	25 mm	2.36 kg	$0.181 \mathrm{~kg} / \mathrm{mm}$	1829 mm	6.895 bar	-7° to $60^{\circ} \mathrm{C}$	0.0127 mm	$\pm 6.35 \mathrm{~mm}$ per end

LS Auxiliary Carrier - all Sizes

PERFORMANCE
The auxiliary carrier option substantially increases load carrying and bending moments capacity over the standard single carrier models. As a general rule, the auxiliary carrier option is highly recommended in vertical applications (My) if the distance from the carrier mounting surface to the load center of gravity (CG) exceeds the overall length of the carrier. Auxiliary carriers can be ordered with (DW) or without (DO) an internal piston. (Auxiliary carriers without a piston have no cushion on the cylinder end closest to the auxiliary carrier.)

NOTE: breakaway pressure will increase when using auxiliary carrier.

BENDING MOMENTS

LS05 AUXILIARY CARRIER LOAD vs DISTANCE

Rates were calculated with the following assumptions:
1.) Coupling between carriers is rigid. 2.) Load is equally distributed between carriers.
3.) Coupling device applies no misalignment loads to carriers.

	BORE SIZE		"D" MINIMUM *		MAX. BENDING MOMENT						$\frac{\text { MAX. LOAD }}{\mathrm{Fz}}$			
			My**	Mx		Mz**								
	in	mm			in	mm	in-lbs	N-m	in-lbs	N-m	in-lbs	N-m	lbs	kg
05	0.50	12	3.63	92.2	9.51	1.07	16.00	1.81	14.27	1.61	20	9.08		
10	1.00	25	5.75	146.1	177.80	20.09	160.00	18.08	277.80	31.30	200	90.8		

[^0]

ORDERING INFORMATION

When ordering, determine the minimum distance required between carriers (dimension " D " in Auxiliary Carrier Bending

Determine your working stroke and your " D " dimension, then enter these into your configuration string. (Example: LS10SK30.00DW8.00RT2) The configurator will calculate the overall length of the actuator. Refer to page LS_18 for complete LS ordering information.

ASSEMBLY INFORMATION

IMPORTANT INFORMATION REGARDING AUXILIARY CARRIER PLACEMENT
When an LS is ordered without shock absorbers, the auxiliary carrier is always placed to the left (while facing the switch mounted or open port side) of the main carrier.
When an LS is ordered with shock absorbers, the auxiliary carrier is always placed to the right (while facing the switch mounted or open port side) of the main carrier.

DISTANCE BETWEEN SUPPORTS

- - Deflection Rates - Tube supports recommended above this line.

$$
-1+0
$$

Base mounting linear slides may be accomplished by fastening directly to " T " slot nuts provided in the base of the slide (shown at right) or by using the MP mounting plates.

DIMENSIONS

	$\begin{aligned} & \text { BORE } \\ & \text { SIZE } \end{aligned}$	A	B	C	D	E	F	G	H \varnothing
05	0.50	0.38	0.75	1.60	3.30	3.60	0.25	1.60	0.156
10	1.00	0.38	0.75	2.50	5.00	5.50	0.25	2.63	0.270

LS Switches－All Sizes

SWITCHES

There are 10 sensing choices：DC reed，form A（open）or form C（open or closed）；AC reed（Triac，open）；Hall－effect，sourcing，PNP（open）；Hall－effect， sinking，NPN（open）；each with either flying leads or QD（quick disconnect）． Commonly used to send analog signals to PLC（programmable logic controllers），TLL，CMOS circuit or other controller device．These switches are activated by the actuator＇s magnet．
Switches contain reverse polarity protection．QD cables are shielded；shield should be terminated at flying lead end．
If necessary to remove factory installed switches，be sure to reinstall on the same of side of actuator with scored face of switch toward internal magnet．

SPECIFICATIONS

	REED DC				REED AC		HALL－EFFECT DC					
ORDER CODE	回团	回匈	B T $^{\text {T }}$	B ${ }^{\text {M }}$	C T $^{\text {a }}$	C］	TT	T ${ }^{\text {M }}$	园团	圆		
LEAD	5 m	QD＊										
CABLE SHIELDING	Unshielded	Shieldedt	Unshielded	Shielded \dagger	Unshielded	Shieldedt	Unshielded	Shielded \dagger	Unshielded	Shielded \dagger		
SWITCHING LOGIC	＂A＂Normally Open		＂C＂Normally Open or Closed		Triac Normally Open		PNP（Sourcing）NormallyOpen		NPN（Sinking）Normally Open			
MECHANICAL CONTACTS	Single－Pole Single－Throw		Single－Pole Double－Throw		Single－Pole Single－Throw		N0，These Are Solid State Components					
COIL DIRECT	Yes		Yes		Yes		－					
POWER LED	None											
SIGNAL LED	Red				Red	Omande	Red（Taluomane					
OPERATING VOLTAGE	200 Vdc max．		120 Vdc max．				120 Vac max．		5－25 Vdc			
OUTPUT RATING	－				－		$25 \mathrm{Vdc}, 200 \mathrm{~mA} \mathrm{dc}$					
OPERATING TIME	0.6 msec max． （including bounce）		0.7 msec max． （including bounce）		－		<10 micro sec．					
OPERATING TEMPERATURE	$-40^{\circ} \mathrm{F}\left[-40^{\circ} \mathrm{C}\right]$ to $158^{\circ} \mathrm{F}\left[70^{\circ} \mathrm{C}\right]$						$0^{\circ} \mathrm{F}\left[-18^{\circ} \mathrm{C}\right]$ to $150^{\circ} \mathrm{F}\left[66^{\circ} \mathrm{C}\right]$					
RELEASE TIME	1.0 msec ．max．						－					
ON TRIP POINT	－				－		150 Gauss maximum					
OFF TRIP POINT	－				－		40 Gauss minimum					
＊＊POWER RATING（WATTS）	$10.0{ }^{\text {8 }}$		3.0 §§		10.0		5.0					
VOLTAGE DROP	2.6 V typical at 100 mA		NA		－		－					
RESISTANCE	0.1Ω Initial（Max．）				－		－					
CURRENT CONSUMPTION	－				1 Amp at $86^{\circ} \mathrm{F}\left[30^{\circ} \mathrm{C}\right]$	0.5 Amp at $140^{\circ} \mathrm{F}\left[60^{\circ} \mathrm{C}\right]$	200 mA at 25 Vdc					
FREQUENCY	－				$47-63 \mathrm{~Hz}$		－					
CABLE MIN．	0.630 ＂［16mm］											
RADIUS DYNAMIC	Not Recommended											

CAUTION：DO NOT OVER TIGHTEN SWITCH HARDWARE WHEN INSTALLING！

A
＊＊WARNING：Do not exceed power rating（Watt＝Voltage X Amperage）．Permanent damage to sensor will occur．
＊QD＝Quick Disconnect；Male coupler is located 6＂［152mm\} from sensor,
Female coupler to flying lead（part \＃2503－1025）distance is 197＂［5m］also see Cable Shielding specification above
REPLACEMENT OF QD SWITCHES MANUFACTURED BEFORE JULY 1，1997：It will be necessary to replace or rewire the female end coupler．

${ }^{\dagger}$ Shielded from the female quick disconnect coupler to the flying leads．Shield should be terminated at flying lead end．
${ }^{\S}$ Maximum current 500 mA （not to exceed 10VA）Refer to Temperature vs．Current graph and Voltage Derating graph
${ }^{\text {s8 }}$ Maximum current 250 mA （not to exceed 3VA）Refer to Temperature vs．Current graph and Voltage Derating graph

LS Switches - All Sizes

PERFORMANCE

TEMP. vs CURRENT, DC REED

TEMP. vs CURRENT, AC REED

WIRING DIAGRAMS
RT \& R ${ }^{\text {R }}$ MC REED, FORM A

CTT \& C M AC REED, TRIAC

VOLTAGE DERATING, DC REED

INSTALLATION INFORMATION

A
THE NOTCHED
FACE OF THE SWITCH INDICATES THE SENSING SURFACE AND MUST FACE TOWARD THE MAGNET.

B B_{T} \& 圆 DC REED, FORM C

	BROWN	$\begin{aligned} & \text { REEDD } \\ & \text { SWITCH } \end{aligned}$
NORMALLY CLOSED	BLACK	
NORMALLY OPEN	BLUE	

DIMENSIONS

LS Proximity Sensors - All Sizes

This L.E.D. device senses end-of-stroke with one of two normally open inductive d.c. proximity sensors. NPN supplies a sinking signal; PNP supplies a sourcing signal to a device such as a programmable logic controller.
Ambient Temp.: - 13° to $158^{\circ} \mathrm{F}$., (-25° to $70^{\circ} \mathrm{C}$.)
NEMA Encl. Rating: 1, 3, 4, 6, 12, 13
Lead Length:
6.56 feet (2.0 m)

Max. Sensing Distance (LSO5): .059" (1.5mm)
Max. Sensing Distance (LS10): .039" (1.0mm)

Wiring Diagrams

NPN Output

Short-Circuit Indication
The load output immediately turns off and remains off until the short-circuit protection is reset.

PNP Output

Target
Load (between
black and blue) R
Logic (between
brown and black)
Operation
indicator (LED)

Present Absent	NO
Operates	
H	','",
L	
On	
OFF	

Resetting Short-Circuit Protection

To reset the short-circuit protection, repair the short. The short-circuit protection will then automatically reset.

DIMENSIONS

	BORE		SS		ZZ	
SIZE	in	$\mathbf{m m}$	in	$\mathbf{m m}$	in	$\mathbf{m m}$
$\mathbf{0 5}$	0.50	12.7	0.04	1.02	0.46	11.68
$\mathbf{1 0}$	1.00	25.4	0.04	1.02	0.40	10.16

Rodless cylinders with standard internal cushion offer an effective method of decelerating loads. However, all Tolomatic rodless cylinders are capable of carrying heavier loads at higher velocities than the cylinder cushion can absorb. Optional shock absorbers can be used to increase the cylinder's life and broaden the application range for the cylinder model you have chosen.

Typical shock absorber life varies between 1-2 million cycles (depending on environment). Appropriate preventative maintenance should be considered in high cyclic applications.
NOTE: Actuators ordered without selecting a shock absorber MUST have external stops. The LS does NOT have internal bumpers or cushions.

ACAUTION: In applications which result in a load bending moment at deceleration, care should be taken to decelerate the load rather than the carrier of the band cylinder.

DIMENSIONS

PERFORMANCE

VELOCITY vs LOAD

LS10

LIGHT DUTY (Light load/ligh velocity)

HEAVY DUTY (Heavy load/Low velocity)

Contact information: \qquad
\qquad
\qquad

Rodless Cylinder Selection Guidelines - BC2, BC3, BC4, LS - All Sizes
 PROVIIING LOAD GUIDANCE AND SUPPORT

Abstract

The process of selecting a load bearing actuator for a given application can be complex. It is highly recommended that you contact Tolomatic or a Tolomatic Distributor for assistance in selecting the best actuator for your application. The following overview of the selection guidelines are for educational purposes only.

To determine the appropriate Band Cylinder or Linear Slide model for an application, compile the following information:

- Available pressure (PSI)
- Weight of load (lbs or kg)
- Orientation of load (lbs or kgs)
- Velocity of load (in/sec or $\mathrm{mm} / \mathrm{sec}$)
- Stroke length (in or mm)

HINT: Use Tolomatic sizing and selection software, download at: tolomatic.com

\int SELECT

 CYLINDER SIZE- Consult the Theoretical Force vs. Pressure charts.
- Cross-reference the load force (or load weight if force is not known) and the available operating pressure. If the intersection falls below the diagonal line, and if moments do not exceed maximum values listed for that model (see Step 3), the actuator will accommodate the application.

If the intersection is above the diagonal line, a larger cylinder bore size should be considered.
NOTE: Additional force may be required to obtain the necessary acceleration for vertical or horizontal loads.

(DETERMINE NATURE OF LOAD AND THE EFFECT OF BENDING MOMENTS

If the cylinder will guide and support a load located directly over the center of carrier, bending moments will not be a factor in the cylinder selection.
NOTE: The maximum load "L" must not exceed the capacity limits of the cylinder selected.

- Bending Moments

For off center or side loads, determine the distance from the center of mass of the load to the center of the carrier bracket. This measurement is needed to calculate the torque for bending moments. (Refer to Bending Moment chart for each model.)
Should the resulting maximum bending moment exceed figures indicated on the chart, external guides, auxiliary carrier/s or a larger cylinder should be considered.

- Auxiliary Carrier Bending Moments

The auxiliary carrier option (available on most models) increases load carrying capacity and bending moments. Auxiliary carriers can be ordered with or without an internal piston. (Auxiliary
carriers without a piston have no internal cushion on the cylinder end closest to the auxiliary carrier.)
IMPORTANT: When ordering, determine the working stroke, then the minimum distance required between carriers (dimension "D" in Auxiliary Carrier Bending Moments chart). When ordered, Tolomatic's configurator will calculate the overall length of the actuator.
NOTE: breakaway pressure will increase when using auxiliary carriers.

4
 DETERMINE INTERNAL CUSHION CAPACITY

- Consult the Cushion Data chart for the model selected. The velocities listed on the cushion charts are final or cushion impact velocities. On
applications where the internal cushions or bumpers are to be used, be sure the actual, final or impact velocity is known. If the velocity is not known, use of limit switches with valve deceleration circuits or shock absorbers should be considered. NOTE: The BC205 uses external bumpers in place of internal cushions, LS05 \& LS10 do not have cushions or bumpers.
- Cross-reference the final velocity and weight of the load. If the intersection is below the diagonal lines, the internal cushions on the actuator may be used. If the point falls above the dashed diagonal line or if the velocity is not known, use deceleration circuits, external shock absorbers or select a
larger cylinder with greater cushion capacity. On highcyclic applications, use of external stops is strongly recommended.
- Consult the Tube Support chart for the model selected.
- Cross reference the load weight and maximum distance between supports.

6CONSIDER OPTIONS

- Switches- dc Reed, Hall-effect or ac Triac

Band Cylinders and Linear Slides each have different standard features and options. Check the options section for the actuator you have selected.

- Shock Absorbers- if needed.
- Foot Mounting Kits
- Floating Mount Bracket - use when lack of parallelism occurs between the cylinder and an external guided and supported load.
- Single End Porting (BC3, BC4)
- Long Carrier (BC4)
- Proximity Sensors (LS)
- Dual 180° Carrier (BC3)

SIZE	Inch (U.S. Standard)		Metric	
	05	10	05	10
Support ${ }^{1}$	0605-9010	0610-9010	5605-9010	5610-9010
Inductive DC Proximity Sensors - 10-24 volts NPN NO Sink ${ }^{2}$	0605-1023	0610-1023	0605-1023	0610-1023
Inductive DC Proximity Sensors - 10-24 volts PNP NO Source ${ }^{2}$	0605-1024	0610-1024	0605-1024	0610-1024
Switch Rail and Rail Hardware (specify stroke) ${ }^{3}$	0605-9100SK_	0610-9100SK_	0605-9100SK_	0610-9100SK_
Shock Absorbers Field Retrofit Kit - Heavy Duty ${ }^{4,5}$	0605-9009	0610-9023	0605-9009	0610-9023
Shock Absorbers Field Retrofit Kit - Lite Duty ${ }^{4,5}$	0605-9008	0610-9022	0605-9008	0610-9022
T-Nuts (Each)	0605-1042	0610-1042	5605-1042	5610-1042
Configurated Repair Kit ${ }^{6}$	RKLS05NPSK	RKLS10NPSK	RKLS05TP(GP)SK	RKLS10TP(GP)SK
Configurated Repair Kit (Manufactured before May 1, 1998) ${ }^{6}$	RKLS05NPSK_	0610-9033SK_	RKLS05SK_	0610-9033SK_

CONFIG. CODE ORDERING		
	Mounting Hardware \& FE conn. included	
	CODE	
Switch Kit, Reed, Form C, 5m	BT	
Switch Kit, Reed, Form C, Male Conn.	BM	
Switch Kit, Reed, Form A, 5m	RT	
Switch Kit, Reed, Form A, Male Conn.	RM	
Switch Kit, Triac, 5m	CT	
Switch Kit, Triac, Male Conn.	CM	
Switch Kit, Hall-effect, Sinking, 5m	KT	
Switch Kit, Hall-effect, Sinking, Male Conn.	KM	
Switch Kit, Hall-effect, Sourcing, 5m	TT	
Switch Kit, Hall-effect, Sourcing, Male Conn.	TM	

NOTE: When kit is ordered female connector \& all mounting hardware is included

Switch Ordering NOTES:
To order field retrofit switch and hardware kits for all Tolomatic actuators: SW (Then the model and bore size, and type of switch required)
Example: SWLS10RT
(Hardware and Form A Reed switch with 5 meter lead for 1.0" bore LS linear slide)

Replacing an existing switch on an actuator manufactured
BEFORE 7-1-1997
Order using CONFIGURATOR CODE in table above Also order SWITCH RAIL and RAIL HARDWARE
If replacing a quick-disconnect switch on an actuator manufactured BEFORE 7-1-1997 it will also be necessary to replace or require the female-end coupler with the in-line splice (see page Ls_11)
Adding a switch to an actuator manufactured without switches Order using CONFIGURATOR CODE in table above Also order SWITCH RAIL and RAIL HARDWARE

Service Parts Ordering NOTES:

1 Support Kit contains one bracket and two screws
2 Proximity sensors for the LSO5 have 5mm thread size;
LS10 have 8 mm thread size
3 When replacing an existing switch on an actuator manufactured BEFORE 7-1-1997 switch rail and hardware must be ordered stroke length is required. Order switch using Configurator Code in table at left.

4 Shock absorber kit includes one shock and mounting hardware
5 NOTE: Actuators ordered without selecting a shock absorber MUST have external stops. The LS does NOT have internal bumpers or cushions.
6 Repair Kit for LS contains external dust band, internal seal band, wipers, end caps and internal soft seals. Stroke length must be included after number or code.
$N A=$ Not Available

STROKE LENGTH \& MOUNTING TYPE
SK \qquad Stroke, enter desired stroke length in inches
SM \dagger __ .__ Stroke, enter desired stroke length in millimeters
NOTE: Actuator mounting threads and mounting fasteners will be either inch or metric; depending on how stroke length is indicated.
$\mathbf{S K}=$ inch mounting
$\mathbf{S M}=$ metric mounting

MAXIMUM STROKE

	...SK	...SM
SIZE	in	$m m$
$\mathbf{0 5}$	72	1,829
$\mathbf{1 0}$	72	1,829

[^1]AUXILIARY CARRIER (LS_8)
DW Auxiliary carrier With piston \& "D" distance
DO Auxiliary carrier Without piston \& " D " distance "D" Distance between carriers in inches (SK) or millimeters (SM)
MINIMUM "D" DISTANCE BETWEEN CARRIERS

	in	mm
$\mathbf{0 5}$	5.07	129
$\mathbf{1 0}$	5.17	131

*When ordering auxiliary carrier option, enter the distance required between carriers. The configurator will calculate the overall length of the actuator.

SUPPORTS (LS_10)

MP_Support \& number required
*NOTE: Four square nuts are provided with each linear slide for base mounting. Additionally 2 square nuts are provided for 30 " of stroke and 2 for every 20 " of stroke thereafter.

SHOCK ABSORBERS (LS_14)

SH_ Shock, Heavy duty and number required
SL_ Shock, Light duty and number required

NOTE: Actuators ordered without selecting a shock absorber MUST have external stops. The LS does NOT have internal bumpers or cushions.

PROXIMITY SENSOR (LS_13)

NP_ Sinking type proximity sensor (NPN)
PN_Sourcing type proximity sensor (PNP)

SWITCHES (LS_11)

(Quantity desired follows ordering code)
RM_ Reed Switch (Form A) with 5-meter lead/QD (Quick-disconnect)
RT_ Reed Switch (Form A) with 5-m lead
BM_ Reed Switch (Form C) with 5 -meter lead/QD
BT_ Reed Switch (Form C) with 5-m lead
KM_ Hall-effect Sinking Switch with 5 -meter lead/QD
KT_Hall-effect Sinking Switch w/ 5 -m lead
TM_ Hall-effect Sourcing Switch with 5-meter lead/QD
IT_ Hall-effect Sourcing Switch with 5-meter lead
CM_ TRIAC Switch with 5 -meter lead/QD
CT_ TRIAC Switch with 5 -meter lead MDR Dual Magnet (Reed, Hall-effect, Triac)

[^0]: * "D" is distance between carriers
 ** Loads calculated are at minimum "D", for substantially higher My and Mz loads increase "D" and refer to graph above

[^1]: Not all codes listed are compatible with all options. Contact Tolomatic with any questions.

